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Abstract. Studies on a generalized Coleman-Hepp model are done on the basis of a spin coherent state
representation and a transformation property of the model Hamiltonian. Namely, transforming the original
model Hamiltonian into a simpler form, we can determine time evolution of the whole system by successive
applications of rotation operators in a spinor space. Dynamics of detector spins as well as that of an incident
particle are fully discussed. Explicit numerical evaluations are also performed. Relevance of our solution
to a generalized Cini model is also briefly mentioned.

PACS. 03.65.-w Quantum mechanics – 03.65.Bz Foundations, theory of measurement,
miscellaneous theories (including Aharonov-Bohm effect, Bell inequalities, Berry’s phase) –
05.30.-d Quantum statistical mechanics

1 Introduction

Decoherence in quantum systems has played important
roles from the very beginning of the quantum mechanics
mainly in connection with measurement theory [1,2].

Meanwhile, the decoherence phenomena have long
been studied in the field of nonequilibrium statistical
physics.

For instance, since the discovery of nuclear magnetic
resonance [3,4], the decoherence is classified into two cat-
egories, namely, one is the so-called longitudinal relax-
ation in which nuclear spins lose their energies in in-
teraction with reservoir, and the other is the transverse
relaxation where phase coherence of the spins is lost due
to the interaction with the reservoir. Sometimes the for-
mer is called T1 process whereas the latter T2 (dephasing)
process. These relaxation processes are incorporated into
a simple phenomenological Bloch equation [5].

Subsequently, microscopic basis and generalization of
the Bloch equation are given [6–10]. The theoretical frame-
work on spin relaxation [11–13] has wide applicability and
has been used in quantum electronics [14,15], quantum
optics [16–18], photophysics of solids and so on. These
theories are formulated within lower order perturbational
method and their validity is confined to the narrowing
limit where correlation time of the reservoir is very short
compared with the characteristic time of relaxation.

When the relevant system is strongly coupled with its
environment, the conventional perturbation approach be-
comes no longer valid, and therefore we must take into
account the interaction as a whole. However, this is a
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formidable task to perform in practical applications. To
our knowledge, only a few stochastic models are exactly
solvable: Kubo-Anderson model of a random frequency
modulation [19,20], a dielectric relaxation model with in-
ertia effect [21], and a low (zero) field resonance model
of spin relaxation [22,23] which is a special case of the
original low field model [24].

In contrast to the above mentioned traditional relax-
ation (decoherence) theories, there exists a special but
nonetheless important solvable model of the quantum de-
coherence. This is due to Coleman and Hepp [25] who
introduced the model in order to examine measurement
process of quantum mechanics. The original model con-
sists of an incident particle and an array of spins which
are regarded as a detector. When the particle approaches a
detector spin, the former exerts force on the latter destroy-
ing initial memory and vice versa. There have been sev-
eral attempts to examine the original model itself [26,27],
and variant [28] or generalization [29–32] of the model. In
these articles, main interest lies in the quantum mechani-
cal measurement process and/or relaxation (decoherence)
process. Especially, emergence of a Wiener process [31] re-
flects essential relevance of the model to the irreversible
phenomena mentioned earlier. Furthermore, spin relax-
ation (dephasing) process of the incident particle was also
analyzed [32].

Then, our purpose in this paper is twofold: one is to
give a simple theoretical framework to analyze a general-
ized version of the Coleman-Hepp (C-H) model. This can
be done on the basis of a transformation property in refer-
ence [32] and a spin coherent state representation [33,34]
with which spin algebra of the detector spins is performed
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only in 2 × 2 space even for arbitrary spin magnitude of
S. The other purpose is to determine explicitly dynamical
process of the detector spins as well as that of an inci-
dent particle. This is because of little detailed studies on
the dynamical process of the detector. To our knowledge,
only a single reference [29] exists on the stochastic pro-
cess of the detector. In addition, it is important to find a
rigorous solution for a quantum mechanical decoherence
(relaxation) model other than the stochastic models men-
tioned above. Namely, we determine time evolution of the
whole system and solve for averaged quantities of the rel-
evant particle and the detector. Numerical evaluation of
these quantities is also performed.

2 Preliminaries

2.1 Model Hamiltonians and transformation properties

Now let us introduce an extended version of the Coleman-
Hepp model which is composed of an incident particle
and a detector. The particle is characterized by a posi-
tion operator X , a momentum operator P and a spin I
of magnitude 1/2. A set of N spins {Sl}, (l = 1, 2, ..., N)
constitutes the detector; the lth spin is located at the po-
sition xl.

Thus, our system can be described by the Hamiltonian
of the form

H = H0 + P+H1 (1)

where

H0 = HI +HD (2)

with

HI = vP + ~ωII
z (3)

and

HD =
N∑
l=1

~ωlSzl . (4)

The Hamiltonian of the incident particle is given by HI

whereas that of the detector by HD; v and ~ωI are the
velocity and the spin energy of the particle, respectively,
and ~ωl the energy of the lth detector spin. These ob-
servables satisfy [X,P ] = i~, [Sxl , S

y
l′ ] = iδl,l′Szl and cyclic

permutations thereof.
An interaction Hamiltonian between the incident par-

ticle and the detector is given by

H1 =
N∑
l=1

~Ωl(X,xl) · Sl (5)

where

Ωl(X,xl) = Ωl(X − xl) (cos (ωlX/v) , sin (ωlX/v) , 0)
(6)

is due to an effective field on the lth detector spin when
the particle enters into a neighborhood region around the
position xl.

Then the interaction Hamiltonian takes the form

H1 =
1
2

∑
l

~Ωl(X − xl)
{

eiωlX/vS−l + e−iωlX/vS+
l

}
(7)

where we have put

S±l = Sxl ± iSyl . (8)

In (1), the projection operator P+ is defined by

P+ =
1
2

+ Iz (9)

which takes value of 1(0) when the particle spin is
up(down).

For later convenience we also define

P− =
1
2
− Iz (10)

with an idempotent relation,

P2
± = P± (11)

and

P+ + P− = 1 (12)

ensuring P± to be the projection operators.
Next, we briefly summarize transformation proper-

ties of the Hamiltonians and the time evolution operator
e−iHt/~ introduced in reference [32].

The second term on the right hand side of (1) gives a
restriction that the interaction is effective only when the
incident particle is in the up-spin state.

Therefore, we have the following simple relation:

HP+ = (H0 +H1)P+ (13)

and

HP− = H0P− (14)

which yield

e−iHt/~P+ = e−i(H0+H1)t/~P+ (15)

and

e−iHt/~P− = e−iH0t/~P−. (16)

From equations (15, 16), we have

e−iHt/~ = e−i(H0+H1)t/~P+ + e−iH0t/~P− (17)

where use has been made of (12).
Next we examine transformation properties of the

Hamiltonian under rotations.
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Let a rotational operator in the spin space of the de-
tector be D({φl}). Especially, rotations around z-axis are
given by

Dz({φl}) =
∏
l

Dzl (φl) (18)

where

Dzl (φl) = e−iφlS
z
l (19)

which transforms S±l and vP as

Dzl (ωlX/v)S±l Dzl (ωlX/v)† = S±l e∓iωlX/v (20)

and

Dzl (ωlX/v)vPDzl (ωlX/v)† = vP + ~ωlSzl . (21)

Using above relations, we find immediately

Dz({ωlX/v})H0
′Dz({ωlX/v})† = H0 (22)

and

Dz({ωlX/v})H1
′Dz({ωlX/v})† = H1 (23)

where we have defined

H0
′ = vP + ~ωII

z (24)

and

H1
′ =

∑
l

~Ωl(X − xl)Sxl . (25)

Thus the time evolution operator (17) is rewritten in terms
of the simpler Hamiltonians H0

′ and H1
′:

e−iHt/~ = Dz({ωlX/v})
{

e−i(H0
′+H1

′)t/~P+

+e−iH0
′t/~P−

}
Dz({ωlX/v})†. (26)

It is more convenient to extract the interaction part in the
evolution operator. Namely, we write

e−i(H0
′+H1

′)t/~ = e−iH0
′t/~V (t) (27)

obtaining an equation for V (t):

V̇ (t) = − i
~
Ĥ1
′(t)V (t) (28)

where

Ĥ1
′(t) = eiH0

′t/~H1
′e−iH0

′t/~ (29)

=
∑
l

~Ωl(X + vt− xl)Sxl . (30)

Because of the property that[
Ĥ1
′(t), Ĥ1

′(t′)
]

= 0 (31)

for arbitrary t and t′, we can solve (28) easily to get

V (t) = exp
[
− i
~

∫ t

0

dt′ Ĥ1
′(t′)

]
V (0) (32)

= exp

[
−i
∑
l

Θl(X ; t)Sxl

]
(33)

where V (0) = 1 and we have put

Θl(x; t) =
∫ t

0

dt′Ωl(x+ vt′ − xl). (34)

Thus, from (26), the time evolution of the whole system
is determined by

e−iHt/~ = Dz({ωlX/v}){e−iH0
′t/~V (t)P+

+ e−iH0
′t/~P−}Dz({ωlX/v})† (35)

which will be used in our subsequent calculations.

2.2 Spin coherent state representation

In order to describe details of spin systems, the spin coher-
ent state affords a powerful tool. That is, we would find
a straightforward way of manipulations using the state.
Without it, rather cumbersome calculations are inevitable.
Thus, we briefly summarize the known results of the spin
coherent state [33,34].

2.2.1 Spin coherent state

Let us first represent the spin operators in terms of the
Schwinger bosons [35,36]:

S± ≡ b†±b∓, (36)

Sz ≡ 1
2

(N+ −N−), (37)

and

N± ≡ b†±b± (38)

with

[b±, b
†
±] = 1. (39)

A simultaneous eigenstate of N+ and N− are of the form

N±|n+, n−〉 = n±|n+, n−〉 (40)

where

|n+, n−〉 ≡ |n+〉 ⊗ |n−〉 (41)

whose constituent states |n±〉 satisfy

b†±|n±〉 =
√
n± + 1|n± + 1〉 (42)
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and

b±|n±〉 =
√
n±|n± − 1〉 (43)

with

|n+, n−〉 =

(
b†+

)n+ (
b†−

)n−√
n+!
√
n−!

|0, 0〉. (44)

Finally, we have

S±|S,m) =
√

(S ∓m)(S ±m+ 1)|S,m± 1),
(45)

Sz|S,m) = m|S,m) (46)

where we write

|S,m) ≡ |n+ = S +m〉 ⊗ |n− = S −m〉. (47)

Thus, the product number state is seen to be nothing but
the angular momentum state.

Then, it is natural to introduce a coherent state for
spin (angular momentum) by extending the usual boson
coherent state:

b±|z〉 = z±|z〉 (48)

with

|z〉 = |z+〉 ⊗ |z−〉 (49)

where |z+〉 (|z−〉) is the boson coherent state for the an-
nihilation operator b+ (b−).

We call |z〉 the “spin coherent state” which has several
expressions:

|z〉 = D(z)|0〉 (50)

= e−|z|
2/2

∞∑
n+=0

∞∑
n−=0

z
n+
+ z

n−
−√

n+!
√
n−!
|n+, n−〉 (51)

= e−|z|
2/2

∞∑
S=0

S∑
m=−S

zS+m
+ zS−m−√

(S +m)!
√

(S −m)!
|S,m)

(52)

where

D(z) = exp
[
zb† − z∗b

]
. (53)

In these expressions, the bold-faced quantities should be
flexibly recognized as two-component column or row vec-
tors. Hence we have, for instance,

zb† = (z+, z−)

(
b†+
b†−

)
(54)

= z+b
†
+ + z−b

†
−. (55)

We have also written the “vacuum” as

|0〉 ≡ |n+ = 0〉 ⊗ |n− = 0〉. (56)

Inner product of the spin coherent states is given by

〈z|z′〉 = exp
[
z∗z′ − 1

2
(|z|2 + |z′|2)

]
. (57)

2.2.2 Transformation properties of |z〉 under rotations

We already introduced the rotation operator Dz(φ) =
e−iφSz in (19). Transformation properties of the spin co-
herent state is very simple under rotations. That is, the
states {|z〉} transform among themselves.

Explicitly, let us consider effect of Dz(φ) on |z〉:

Dz(φ)|z〉 = e−(|z+|2+|z−|2)/2

×

∑
n+

(
e−iφ/2z+

)n+√
n+!

|n+〉



⊗

∑
n−

(
eiφ/2z−

)n−√
n−!

|n−〉

 (58)

= |z′〉 (59)

where

z′ =

(
z+
′

z−′

)
(60)

=

(
e−iφ/2z+

eiφ/2z−

)
. (61)

We can rewrite above expression as follows:

z′ =

(
e−iφ/2 0

0 eiφ/2

)(
z+

z−

)
(62)

= Rz(φ)z (63)

where

Rz(φ) = e−iφσz/2 (64)

with the Pauli matrix

σz =

(
1 0
0 −1

)
. (65)

We have thus

Dz(φ)|z〉 = |Rz(φ)z〉. (66)

Similarly, the following relations are obtained:

Dµ(φ)|z〉 = |Rµ(φ)z〉 (µ = x, y, z) (67)

where

Dµ(φ) = e−iφSµ (68)

and

Rµ(φ) = e−iφσµ/2. (69)

More generally, a rotation of angle φ of the spin coher-
ent state |z〉 around an axis specified by a unit vector n̂
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is equivalent to the same rotation of the two-component
vector z:

D(φ, n̂)|z〉 = |R(φ, n̂)z〉 (70)

where

D(φ, n̂) = e−iφn̂·σ/2. (71)

These will be used in the following development.

2.2.3 Basic spin coherent state and Bloch state

An important spin coherent state is generated from a spe-
cial spin coherent state |z+ = z, z− = 0〉 by an Euler
rotation, z being a complex number:

|z〉 = e−iφSze−iθSy |z, 0〉 (72)

where z is given by(
z+

z−

)
=

(
ze−iφ/2 cos θ/2
zeiφ/2 sin θ/2

)
. (73)

In obtaining above expressions, we have used (67). Next,
we rewrite (73) in an alternative form.

From (52) we have

|z, 0〉 = e−|z|
2/2

∞∑
S=0

z2S√
(2S)!

|S, S) (74)

which clearly shows that the special spin coherent state
|z, 0〉 is a superposition of the “spin up state” |S, S). This
is the reason why we set z− = 0 in specifying the state
|z, 0〉. From equations (72, 74) we find

|z〉 = e−|z|
2/2

∞∑
S=0

z2S√
(2S)!

|S; θ, φ〉 (75)

where

|S; θ, φ〉 = e−iφSze−iθSy |S, S) (76)

is called the Bloch state [37,38].
Roughly speaking, in the Bloch state, a spin points

to the direction specified by the polar angle θ and the
azimuthal angle φ.

Let A(S) be an operator function of S whose magni-
tude is S. Then we have

〈z|A(S)|z〉 = e−|z|
2
∞∑
S=0

|z|4S
(2S)!

〈S; θ, φ|A(S)|S; θ, φ〉. (77)

Information on a fixed subspace of spin magnitude S is
contained in the matrix element in the right hand side of
(77). Superiority of the use of |z〉 over direct use of |S; θ, φ〉
is clearly seen in our subsequent developments.

3 Quantum dynamical processes

In the present section let us proceed to obtain explicit
basic expressions for several observables.

We confine our discussions to a simple initial condition
on the wave function of the whole system.

Let the initial state of the whole system be |Ψ(0)〉〉:

|Ψ(0)〉〉 = |I〉 ⊗ |ψ〉 ⊗ |{zl}〉 (78)

where

|I〉 = a|+〉+ b|−〉, (79)

|ψ〉 =
∫

dxψ(x)|x〉, (80)

and

|{zl}〉 =
N∏
l=1

|zl〉 (81)

are, respectively, the spin state and orbital state of the
incident particle, and the detector state composed of N
spins.

The incident particle is assumed to have spin 1/2:

Iz|±〉 = ±1
2
|±〉. (82)

While, the orbital state is expressed by the eigenstate
of X :

X |x〉 = x|x〉. (83)

The initial state of the detector is the product of the con-
stituent spin coherent state of N spins.

3.1 Dynamical process of an incident particle spin

We study transverse spin dynamical process of the inci-
dent particle determined by

〈〈I−(t)〉〉 ≡ 〈〈Ψ(0)|I−(t)|Ψ(0)〉〉

= 〈〈Ψ(0)|eiHt/~I−e−iHt/~|Ψ(0)〉〉 (84)

where

I− = Ix − iIy. (85)

Using (17) and a relation I−P− = 0, we have

I−e−iHt/~ = I−e−i(H0+H1)t/~P+. (86)

With the conjugate relation of (17) and a relation
P+I

−P+ = 0, we find

eiHt/~I−e−iHt/~ = I−eiH0t/~e−i(H0+H1)t/~P+e−iωIt (87)
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which gives

〈〈I−(t)〉〉 = ab∗〈+| ⊗ 〈ψ| ⊗ 〈{zl}|eiH0t/~

× e−i(H0+H1)t/~|{zl}〉 ⊗ |ψ〉 ⊗ |+〉e−iωIt. (88)

Using equations (22, 23, 27) we obtain

eiH0t/~e−i(H0+H1)t/~ =

Dz({ωlX/v})V (t)Dz({ωlX/v})† (89)

where V (t) is given by (33).
We have thus with the use of (80)

〈〈I−(t)〉〉 = ab∗e−iωIt

∫
dx |ψ(x)|2

× 〈{zl}|
∏
l

Dzl (ωlx/v)Vl(x, t)Dzl (ωlx/v)†|{zl}〉 (90)

where

Vl(x, t) = exp [−iΘl(x; t)Sxl ] (91)

= Dxl (Θl(x; t)) . (92)

We note that the operator Vl(x, t) is nothing but the ro-
tation operator Dxl (φ) of (68).

Therefore, the matrix element on the right hand side
of (90) can be evaluated easily with the help of (67):

〈zl|Dzl (ωlx/v)Dxl (Θl(x; t))Dzl (ωlx/v)†|zl〉 = 〈zl|z′l〉 (93)

where

z′l = Rzl (ωlx/v)Rxl (Θl(x; t))Rzl (−ωlx/v)zl

=

 zl,+ cos
Θl(x; t)

2
− izl,−e−iωlx/v sin

Θl(x; t)
2

−izl,+eiωlx/v sin
Θl(x; t)

2
+ zl,− cos

Θl(x; t)
2

 .

(94)

In obtaining (94) we used

Rzl (φ) = e−iφσzl /2 =

(
e−iφ/2 0

0 eiφ/2

)
(95)

and

Rxl (θ) = e−iθσxl /2 =

 cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

 . (96)

The inner product (93) is already given by (57) and hence
we have

〈〈I−(t)〉〉 = ab∗e−iωIt

∫
dx |ψ(x)|2

∏
l

〈zl|z′l〉 (97)

where

〈zl|z′l〉 = e−|zl|
2

exp
[
|zl|2

{
cos

Θl(x; t)
2

−i sin θl cos(φl − ωlx/v) sin
Θl(x; t)

2

}]
(98)

with

|zl|2 = |zl,+|2 + |zl,−|2. (99)

In order to extract information on a fixed spin magnitude
space, we further expand the right hand side of (98):

〈zl|z′l〉 = 〈zl|Dzl (ωlx/v)Dxl (Θl(x; t))Dzl (−ωlx/v)|zl〉
(100)

= e−|zl|
2

∞∑
Sl=0, 12 ,···

|zl|4Sl
(2Sl)!

[
cos

Θl(x; t)
2

−i sin θl cos(φl − ωlx/v) sin
Θl(x; t)

2

]2Sl

(101)

which is a special case of the formula (77) for the operator

A(Sl) = Dzl (ωlx/v)Dxl (Θl(x; t))Dzl (−ωlx/v) (102)

yielding an expression

〈Sl; θl, φl|Dzl (ωlx/v)Dzl (Θl(x; t))Dzl (−ωlx/v)|Sl; θl, φl〉 =[
cos

Θl(x; t)
2

− i sin θl cos(φl − ωlx/v) sin
Θl(x; t)

2

]2Sl

.

(103)

Consequently, for the initial condition,

|Ψ(0)〉 = |I〉 ⊗ |ψ〉 ⊗ |{Sl; θl, φl}〉 (104)

in place of |Ψ(0)〉〉 given by (78), with

|{Sl; θl, φl}〉 =
∏
l

|Sl; θl, φl〉, (105)

we have

〈I−(t)〉 ≡ 〈Ψ(0)|I−(t)|Ψ(0)〉

= ab∗e−iωIt

∫
dx |ψ(x)|2

∏
l

[
cos

Θl(x; t)
2

−i sin θl cos(φl − ωlx/v) sin
Θl(x; t)

2

]2Sl

. (106)

This is the desired result describing spin dephasing process
of the incident particle in the fixed {Sl} subspace of the
detector spins.

In these expressions, the angle Θl(x; t) is an impor-
tant quantity which describes the interaction between the
incident particle and the detector.
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From (34) this is given by

Θl(x; t) =
∫ t

0

dt′Ωl(x+ vt′ − xl)

=
1
v

∫ x+vt

x

dx′Ωl(x′ − xl). (107)

In view of (80) or (106), it is evident that the quantity x
is associated with the orbital wave function ψ(x) which is
localized around the origin (x = 0) with a width ∆. While
in (107), Ωl(x′−xl) is assumed to be localized around x′−
xl with a width δ. Therefore, contribution to the integral
in (107) comes mainly from the region of xl − δ ≤ x′ ≤
xl + δ, allowing us to rewrite Θl(x; t) as

Θl(x; t) =
1
v

∫ x+vt

−∞
dx′Ωl(x′ − xl) (108)

as far as the condition d > cδ is satisfied, c being a suitable
numerical factor.

Hence, we have

Θl(x; t) = Θl(x+ vt) (109)

where

Θl(x) =
1
v

∫ x

−∞
dx′Ωl(x′ − xl). (110)

From the general expression (106) we can examine an ideal
case where, at t = 0, the incident spin direction is parallel
to x-axis, that is,

|I〉 =
1√
2

(|+〉+ |−〉) (111)

and all the detector spins are in the down states, |{Sl; θl =
π, φl = 0}〉.

Moreover, distance between adjacent spins in the de-
tector is fixed to be d:

xl = ∆+ ld (l = 1, 2, ..., N) (112)

where ∆ is the width of |ψ(x)|2 and we set

Ωl(x− xl) =
Ωld√
2πδ2

e−(x−xl)2/2δ2 . (113)

With an assumption that δ � ∆, we may put

|ψ(x)|2 = δ(x). (114)

In this idealized case, we have from (107):

〈Ix(t)〉 =
1
2

cosωIt
∏
l

[
cos

Θl(vt)
2

]2Sl

, (115)

〈Iy(t)〉 =
1
2

sinωIt
∏
l

[
cos

Θl(vt)
2

]2Sl

, (116)

〈Iz(t)〉 = 0, (117)

where Θl(x) is given by (110). This coincides with the ones
for reference [32].

The last expression is obvious from

[Iz,H] = 0 (118)

where H is given by (78), and

〈Iz(t)〉 =
1
2
(
|a|2 − |b|2

)
. (119)

3.2 Dynamics of the detector

Next we proceed to analyze dynamics of the detector. Rel-
evant quantities are 〈〈S−l (t)〉〉 and 〈〈Szl (t)〉〉 defined by

〈〈S−l (t)〉〉 = 〈〈Ψ(0)|eiHt/~S−l e−iHt/~|Ψ(0)〉〉 (120)

and

〈〈Szl (t)〉〉 = 〈〈Ψ(0)|eiHt/~Szl e−iHt/~|Ψ(0)〉〉. (121)

Thus it is convenient to evaluate the state vector

|Ψ(t)〉〉 ≡ e−iHt/~|Ψ(0)〉〉 (122)

where |Ψ(0)〉〉 is given by (78).
We first resolve the time evolution operator to obtain

|Ψ(t)〉〉 = e−i(H0+H1)t/~P+|Ψ(0)〉〉
+e−iH0t/~P−|Ψ(0)〉〉

= Dz({ωlX/v})e−iH′0t/~ {V (t)P+ + P−}
×Dz({ωlX/v})†|Ψ(0)〉〉 (123)

where use has been made of equations (17, 35), V (t) being
given by (33).

Noting (92) we can successively apply the transforma-
tion property (67) on the spin coherent state |{zl}〉 of
|Ψ(0)〉〉, (78), to find

|Ψ(t)〉〉 =
∫

dxψ(x)|x + vt〉

⊗
{
ae−iωIt/2|+〉 ⊗ |{z(int)

l (x)}〉 + beiωIt/2|−〉 ⊗ |{z(non)
l }〉

}
(124)

where

z(int)
l (x) = Rzl

(
ωl
(x
v

+ t
))
Rxl (Θl(x; t))Rzl (−ωlx/v) zl

=

e−iωlt/2
(
zl,+ cos Θl(x;t)

2 −izl,−e−iωlx/v sin Θl(x;t)
2

)
eiωlt/2

(
zl,− cos Θl(x;t)

2 −izl,+eiωlx/v sin Θl(x;t)
2

)


(125)

and

z(non)
l = Rzl

(
ωl
(x
v

+ t
))
Rzl (−ωlx/v)zl

=

(
zl,+e−iωIt/2

zl,−eiωIt/2

)
. (126)
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In obtaining these expressions, we used a relation of the
form

e−iξP/~|x〉 = |x+ ξ〉. (127)

Next, we note that

〈z(int)
l |S−l |z

(int)
l 〉 = 〈z(int)

l |b†l,−bl,+|z
(int)
l 〉

= z
(int)∗
l,− z

(int)
l,+ (128)

where use has been made of equations (36, 48).
Using equations (125, 73), we rewrite (128) as

〈z(int)
l |S−l |z

(int)
l 〉 =

|zl|2
2

e−iωlt

[{
e−iφl cos2 Θl(x; t)

2

+ei(φl−2ωlx/v) sin2 Θl(x; t)
2

}
sin θl

+ie−iωlx/v sinΘl(x; t) cos θl
]
. (129)

Similarly we have

〈z(non)
l |S−l |z

(non)
l 〉 =

1
2
|zl|2e−iωlte−iφl sin θl. (130)

Consequently, with the use of (124), we can calculate
(120) as

〈〈S−l (t)〉〉 = 〈〈Ψ(t)|S−l |Ψ(t)〉〉

=
∫

dx |ψ(x)|2
{
|a|2〈z(int)

l |S−l |z
(int)
l 〉

+|b|2〈z(non)
l |S−l |z

(non)
l 〉

}
. (131)

We further rewrite (131), noting an identity

1
2
|zl|2 = e−|zl|

2
∞∑

Sl=0, 12 ,···

|zl|4Sl
(2Sl)!

Sl, (132)

to obtain

〈〈S−l (t)〉〉 = e−|zl|
2 ∑
Sl

|zl|4Sl
(2Sl)!

Sle−iωlt

∫
dx |ψ(x)|2

×
[{
|a|2
(

e−iφl cos2 Θl(x; t)
2

+ei(φl−2ωlx/v) sin2 Θl(x; t)
2

)

+ |b|2e−iφl

}
sin θl + i|a|2e−iωlx/v sinΘl(x; t) cos θl

]
.

(133)

Referring to (77), we finally find the following result:

〈S−l (t)〉 ≡ 〈Ψ(0)|S−l (t)|Ψ(0)〉 = 〈Ψ(t)|S−l |Ψ(t)〉 (134)

= Sle−iωlt

∫
dx |ψ(x)|2

×
[{
|a|2
(

e−iφl cos2 Θl(x; t)
2

+ei(φl−2ωlx/v) sin2 Θl(x; t)
2

)
+ |b|2e−iφl

}
sin θl + i|a|2e−iωlx/v sinΘl(x; t) cos θl

]
(135)

where

|Ψ(t)〉 = e−iHt/~|Ψ(0)〉, (136)

|Ψ(0)〉 being given by (105), i.e.,

|Ψ(0)〉 = |I〉 ⊗ |ψ〉 ⊗ |{Sl; θl, φl}〉. (137)

The expression (135) gives details of the transverse dy-
namical process of the detector spin Sl.

Similarly we can determine the longitudinal dynamical
process by calculating 〈〈Szl (t)〉〉:

〈〈Szl (t)〉〉 = e−|zl|
2 ∑
Sl

|zl|4Sl
(2Sl)!

Sl

∫
dx |ψ(x)|2

×
[{
|a|2 cosΘl(x; t) + |b|2

}
cos θl

+i|a|2 sin(φl − ωlx/v) sinΘl(x; t) sin θl
]

(138)

which gives immediately

〈Szl (t)〉 = Sl

∫
dx |ψ(x)|2

[{
|a|2 cosΘl(x; t) + |b|2

}
cos θl

+i|a|2 sin(φl − ωlx/v) sinΘl(x; t) sin θl
]
. (139)

As an ideal case of (114) with the same initial condition
below (111), these are simplified to

〈Sxl (t)〉/Sl = −1
2

sinωlt sinΘl(vt), (140)

〈Syl (t)〉/Sl =
1
2

cosωlt sinΘl(vt) (141)

and

〈Szl (t)〉/Sl = −1
2

(cosΘl(vt) + 1) . (142)

4 Numerical evaluations and concluding
remarks

Let us examine the simplified case of (115–117). We show
in Figure 1 time evolution of 〈Ix(t)〉 and 〈Iy(t)〉 for N = 5,
10 and 20. For smaller values of N , numerical calculations
were already done [32]. All the spin magnitude is as-
sumed to be Sl = 1/2. The spin of the incident particle
is largely perturbed when the particle passes through the
detector region. For N = 5, however, it is observed that
the spin begins to oscillate freely after the particle left
the detector region. With increase in N , both 〈Ix(t)〉 and
〈Iy(t)〉 tend to vanish when the particle passes through
the detector region: this is clearly seen for N = 20. Thus
we have seen that the spin of the incident particle effec-
tively loses its initial memory in the detector region for
larger values of N . This is, of course, caused by the in-
teraction between the two (the incident particle and the
detector spins), but we should emphasize two points: one is
that the phenomenon is observed when N becomes large.
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That is, the detector system plays effectively a role of
reservoir with increasing values of N . The other is that
the behavior in Figure 1 is also due to quantum fluctu-
ations. Both the detector spins and an incident particle
are quantum mechanical objects, and therefore their be-
havior is probabilistic in nature. This will clearly be seen
when we find the so-called quasi-probability density. De-
tails will be published in our following paper. Here, we
only mention the fact that the quantum fluctuations are
not only large but also multi-directional. Namely, proba-
bility to find the spins in other directions than the initially
specified direction becomes rather large when the system
evolves in time. Thus the whole system behaves in the
probabilistic way. This is one of the reasons why we have
the dephasing behavior of Figure 1. In Figure 2 we show
time evolution of 〈Ix(t)〉 and 〈Iy(t)〉 for S1 = 1/2, 5, 20
with N = 1. It is seen that dephasing characteristic can
also be found for larger values of S1. Thus, Sl → large
gives qualitatively the similar effect as N → large even
for a single detector spin, although the dephasing region
is confined around x1. This is due to increase in degree of
freedom in the detector as Sl and/or N become large.

In Figure 3, we show time evolution of 〈S1(t)〉 by
changing the interaction strength Ω1. When the incident
particle comes around x1, the detector spin S1 responds
from the initial spin down state. As is seen from Figures 3a
and 3b, after the passage of the particle, the spin S1(t) os-
cillates freely. For the strong interaction case of Figure 3c,
however, the free oscillation can no longer be seen. This
is due to the strong perturbations caused by the incident
particle destroying the initial coherence of S1 and over-
whelming the effect of HD. We have thus analyzed spin
dynamics of the incident particle and the detector.

As mentioned in the introduction, our concern on the
C–H model has been twofold; one is the decoherence pro-
cess in a relevant system (incident particle for the C–H
model) in strong interaction with its environment (detec-
tor) and the other is related with the quantum mechanical
measurement process. As explicitly shown above, the de-
coherence process is seen to occur for larger values of N
and/or S. This can also be recognized as the collapse of
wave function in the quantum mechanical measurement
process which is the motif for the introduction of the C–H
model. It should be stressed that the decoherence process
is found in our work, namely, dynamical time evolution of
the system is completely determined in contrast with the
most of the previous theories whose main concern lies in
the scattering matrix (i.e., behavior at t→∞) [25–27,29,
30]. We are also interested in determining dynamical pro-
cess of the detector to find 〈Sl〉t. As seen from Figure 3,
the localized spin {Sl} indeed plays an essential role of
detector. That is, the spin Sl makes a precise response
when the incident particle passes nearby region around
xl. From the corresponding dynamics of Sl, we can find
information on the incident particle; we know when it en-
ters and leaves the potential range of Sl, and the interac-
tion strength between the particle and the detector spin.
These were done on the basis of the spin coherent state
representation which enables us to treat the detector spins
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Fig. 1. Time evolution of 〈I(t)〉 as a function of tv/d. The
solid and broken lines correspond to x and y-components, re-
spectively, for the parameters Ω̂l ≡ Ωld/v = 8, δ/d = 0.25,
Sl = 1/2, and (a) N = 5, (b) N = 10, (c) N = 20.

with arbitrary magnitude {Sl}. Even for Sl ≥ 1, we can
perform simple manipulations in the 2× 2 space which is
to be contrasted with the usual rather cumbersome ones
in the angular momentum (2Sl + 1)2 space [32].

Moreover, this formalism enables us rather easily to
find a quasi-probability distribution treated in a forth-
coming paper.

We should further emphasize that our “interim” ex-
pressions (97, 133, 138) incidentally solved a generalized
version of the original Cini model [28]. Explicitly, the
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Fig. 2. Time evolution of 〈I(t)〉 as a function of tv/d. The
solid and broken lines correspond to x and y-components, re-
spectively, for the parameters Ωl d/v = 8, δ/d = 0.25, N = 1,
and (a) S1 = 1/2, (b) 5, (c) 20.

generalized Cini model is obtained from (1) by the fol-
lowing replacement (see, Sect. 2.2.2) with N = 1:

S±l = b†l,±bl,∓ , (143)

Szl = (Nl,+ −Nl,−) /2 (144)

and

Nl,± = b†l,±bl,±, (145)
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Fig. 3. Time evolution of 〈S1(t)〉 as a function of tv/d. The
solid, and broken and thick lines correspond to 〈Sx1 (t)〉/S1,
〈Sy1 (t)〉/S1 and 〈Sz1 (t)〉/S1, respectively, for δ/d = 0.25, ω̂l ≡
ωl d/v = 10, S1 = 1/2. Case of (a) Ω̂l = 1, (b) Ω̂l = 10, (c)

Ω̂l = 5π.

where bl,± and b†l,± are boson operators. Details will be
discussed in our subsequent papers where we also examine
the dynamical processes of the Coleman-Hepp model by
determining time evolution of a density matrix and quasi-
probability density.
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